
## **ECHOGEN** power systems

# Heat Recovery Solution EPS35 1.8MW Nominal Output

**Echogen's EPS35 Heat Recovery System** is an advanced Rankine Cycle for an extensive range of heat recovery applications. Our patented technologies are compatible with a wide variety of heat sources to extract significant amounts of energy and convert it into usable, higher value power.

The EPS35 uses industrial-grade carbon dioxide  $(CO_2)$  as the working fluid, which allows the system to deliver reliable power from a more compact, flexible and low-cost thermal engine. Power output can be optimized for a broad range of heat sources and applications.

Echogen's economical, emission-free power will enable fuelintensive operations to lower the cost of energy, meet higher environmental standards and improve bottom-line performance.



### **Benefits**:

#### Economical

Generates power at a competitive installed cost, reducing overall cost of electricity

#### **Small Footprint**

System components are compact, yielding a small, skid-based system for ease of installation

#### Clean

Produces fuel-free, emission-free electricity to meet environmental regulations

#### Safe

Working fluid is environmentally benign, thermally stable and non-flammable

**Cooled with Air or Water** No water consumption for operation if air-cooled

#### Low Maintenance

System is capable of remote operation and does not require on-site personnel

#### Long Product Lifetime

High-quality manufacturing and use of non-corrosive fluids extend the life of system components



#### **Component Design**

| Generator / Gearbox | Synchronous / epicyclic              |
|---------------------|--------------------------------------|
| Turbomachinery      | Integrated CO <sub>2</sub> turbopump |

#### **Design Standards**

| Classification Rules  | ABS, ASME, IEEE, API (as applicable) |  |
|-----------------------|--------------------------------------|--|
| Piping                | ASME 31.3                            |  |
| Electrical Components | NEMA4, IEEE                          |  |

#### **System**

| Working Fluid     | CO <sub>2</sub> , industrial-grade                    |  |
|-------------------|-------------------------------------------------------|--|
| Controls          | PLC based                                             |  |
| Remote Monitoring | LAN/WAN                                               |  |
| Operation         | Designed for remote control                           |  |
| Package           | Skid-based, enclosed                                  |  |
| Applications      | Gas turbines, industrial heat, diesel engines, biogas |  |

#### **Design Conditions**

| Ambient Temperature           | 15°C     | 59°F          |
|-------------------------------|----------|---------------|
| Relative Humidity             | 60%      |               |
| Waste Heat Supply Temperature | 500°C    | 932°F         |
| Waste Heat Flow Rate          | 20 kg/s  | 44.1 lb/s     |
| Waste Heat Input              | 9,000 kW | 31.2 MMBtu/hr |

#### **Electrical Output**

| Gross Output                   | 2.0 MW                 |  |
|--------------------------------|------------------------|--|
| Net Output (air-cooled option) | 1.8 MW                 |  |
| Voltage / Frequency*           | 13.8 kV, 3-phase, 60Hz |  |

\* Other voltages and frequencies available per customer requirements

#### **General Specifications**

|                | Size envelope (L x W x H) |                 | Weight, dry |            |
|----------------|---------------------------|-----------------|-------------|------------|
| Main Enclosure | 6.1 x 3 x 3.6 m           | 20 x 10 x 12 ft | 23,000 kg   | 50,000 lbs |
| Generator Skid | 3 x 3 x 2.4 m             | 10 x 10 x 8 ft  | 13,500 kg   | 30,000 lbs |

Other equipment may be required specific to installation, including: waste heat exchanger, cooling system and CO<sub>2</sub> storage tank.

