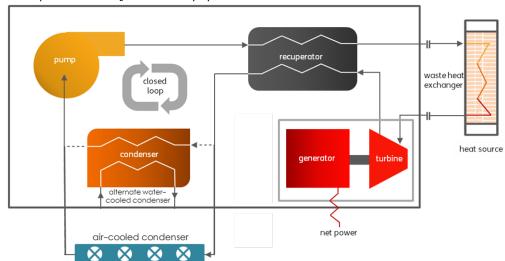
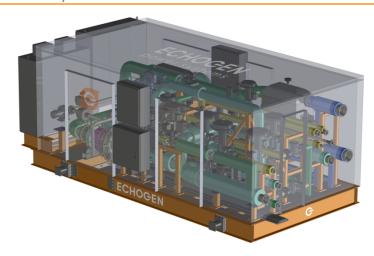


Heat Recovery Solution

EPS30


1.35MW Nominal Output



The EPS30 uses industrial-grade carbon dioxide (CO_2) as the working fluid, which allows the system to deliver reliable power from a more compact, flexible and low-cost thermal engine. Power output can be optimized for a broad range of heat sources and applications.

Echogen's economical, emission-free power will enable fuelintensive operations to lower the cost of energy, meet higher environmental standards and improve bottom-line performance.

Simplified EPS30 CO₂ Heat Recovery Cycle

Benefits:

Compact

Integrated turbo-alternator and compact system components yield a small, skid-based design suitable for land, marine and offshore applications

Efficient

Direct, in-stack waste heat exchanger eliminates boiling and need for intermediate fluid

Clean

Produces fuel-free, emission-free electricity to meet environmental regulations

Safe

Working fluid is environmentally benign, thermally stable and non-flammable

Cooled with Air or Water

No water consumption for operation if air-cooled

Low Maintenance

System is capable of remote operation and does not require on-site personnel

Long Product Lifetime

High-quality manufacturing and use of non-corrosive fluids extend the life of system components

Component Design

Generator	High-speed PM generator with power electronics	
Turbomachinery	Integrated CO ₂ turbo-alternator/pump	

Design Standards

Classification Rules	ABS, ASME, IEEE, API (as applicable)	
Pressure Vessel Construction	ASME Section VIII	
Piping	ASME 31.3	
Electrical Components	NEMA4, IEEE	

System

Working Fluid	CO ₂ , industrial-grade	
Controls	PLC based	
Remote Monitoring	LAN/WAN	
Operation	Designed for remote control	
Package	Skid-based, enclosed	
Applications	Gas turbines, diesel engines, industrial heat, biogas	

Design Conditions

Ambient Temperature	15°C	59°F
Relative Humidity	60%	
Waste Heat Supply Temperature*	500°C	932°F
Waste Heat Flow Rate*	17 kg/s	37.5 lb/s
Waste Heat Input	8,000 kW	27.3 MMBtu/hr

^{*} Alternate low-temperature exhaust design point: 35 kg/s @ 370°C (278,000 lb/hr @ 700°F).

Electrical Output

Gross Output	1.5 MW		
Net Output (air-cooled option)	1.35 MW		
Voltage / Frequency	480VAC, 3-phase, 60Hz		

General Specifications

	Size envelope (L x W x H)		Weight, dry	
Main Enclosure	7.3 x 3.7 x 3 m	24 x 12 x 10 ft	27,000 kg	60,000 lb
Electrical Skid	3 x 3 x 2.5 m	10 x 10 x 8 ft	7,500 kg	17,000 lb

Other equipment may be required specific to installation, including: waste heat exchanger, cooling system and CO₂ storage tank.

