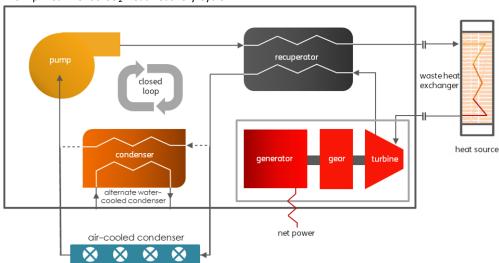
ECHOGEN power systems


EPS100 Heat Recovery Solution

Heat Recovery Solution EPS100 8+ MW Nominal Output

Echogen's EPS100 Heat Recovery System is an advanced Rankine Cycle for exhaust heat recovery applications. Our patented technologies are compatible with a wide variety of heat sources to extract significant amounts of energy and convert it into usable, higher value power.

The EPS100 uses industrial-grade carbon dioxide (CO_2) as the working fluid, which allows the system to deliver reliable power from a more compact, flexible and low-cost thermal engine. Power output can be optimized for a broad range of heat sources and applications. The EPS100 can also be modified for higher output (up to 9 MW) for applications with sufficient available heat.

Echogen's economical, emission-free power will enable fuelintensive operations to lower the cost of energy, meet higher environmental standards and improve bottom-line performance.

ECHOGEN

Benefits:

Economical

Generates power at a competitive installed cost, reducing overall cost of electricity

Small Footprint

System components are compact, yielding a small, skid-based system for ease of installation

Clean

Produces fuel-free, emission-free electricity to meet environmental regulations

Safe

Working fluid is environmentally benign, thermally stable and non-flammable

Cooled with Air or Water

No water consumption for operation if air-cooled

Low Maintenance

System is capable of remote operation and does not require on-site personnel

Long Product Lifetime

High-quality manufacturing and use of non-corrosive fluids extend the life of system components

Simplified EPS100 CO₂ Heat Recovery Cycle

Component Design

Generator	Synchronous 13.8 kV	
Turbomachinery	CO ₂ turbopump, power turbine	

Design Standards

Pressure Vessel Construction	ASME Section VIII
Piping	ASME 31.3
Electrical Components	NEMA4, IEEE

System

Working Fluid	CO ₂ , industrial-grade	
Controls	PLC based	
Remote Monitoring	LAN/WAN	
Operation	Designed for remote control	
Package	Skid-based, enclosed	
Applications	Gas turbines, industrial heat, biogas	

Design Conditions*

Ambient Temperature	15°C	59°F	
Relative Humidity		60%	
Waste Heat Supply Temperature	532°C	990°F	
Waste Heat Flow Rate	68 kg/s	150 lb/s	
Waste Heat Input	33,300 kW	114 MMBtu/hr	

* Conditions required for 8.0 MW net output (see below). Higher outputs are possible with additional available heat.

Electrical Output

Gross Output	8.6 MW	
Net Output (air-cooled configuration)	8.0 MW	
Voltage / Frequency	13.8 kVAC, 3-phase, 60Hz	

General Specifications

	Size envelope (L x W x H)		Weight, dry	
Main Enclosure	15 x 4 x 4 m	50 x 12 x 12 ft	64,000 kg	140,000 lbs
Generator Skid	4.5 x 2.5 x 3 m	14 x 8 x 10 ft	27,000 kg	60,000 lbs
Electrical House	10 x 6 x 4 m	34 x 19 x 12 ft	9,000 kg	20,000 lbs

Other equipment may be required specific to installation, including: waste heat exchanger, cooling system, CO2 storage tank and lube oil cooler.

